Modification of the jet properties at the Relativistic Heavy Ion Collider

Jan Rak

Department of Physics and Astronomy
Iowa State University

QCD in Heavy Ion collisions

Two particles azimuthal correlations in pp, dAu and AuAu

- nuclear modification of jet properties:
 - \triangleright Intrisic momentum k_T
 - \triangleright Jet transverse fragmentation momentum j_T
 - > Parton distribution function
 - > Fragmentation function

Hard scattering

Hard scattering in <u>transverse</u> plane

Point-like partons \Rightarrow elastic scattering

$$\vec{p}_{T, jet1} + \vec{p}_{T, jet2} = \vec{0}$$

Partons have intrinsic transverse momentum
$$\mathbf{k_T}$$
 $\vec{p}_{T,jet1} + \vec{p}_{T,jet2} = \vec{k}_{T,1} + \vec{k}_{T,2}$

Jet Fragmentation (width of the jet cone)

Partons have to materialize (fragment) in colorless world

$$\vec{j}_T = \text{jet fragmentation}$$
 transverse momentum

 j_T and k_T are 2D vectors. We measure the mean value of its projection into the transverse plane $\langle |j_{Tv}| \rangle$ and $\langle |k_{Tv}| \rangle$.

$$\langle | \mathbf{k}_{\mathrm{Ty}} | \rangle = \sqrt{\frac{2}{\pi}} \sqrt{\langle \mathbf{k}^2_{\mathrm{T}} \rangle}$$

- $\langle |j_{Ty}| \rangle$ is an important jet parameter. It's constant value independent on fragment's p_T is characteristic of jet fragmentation (j_T -scaling).
- (|k_{Ty}|) (intrinsic + NLO radiative corrections) carries the information on the parton interaction with QCD medium.

$$\langle k_{\perp}^{2} \rangle_{AA} = \langle k_{\perp}^{2} \rangle_{vac} + \langle k_{\perp}^{2} \rangle_{IS \text{ nucl}} + \langle k_{\perp}^{2} \rangle_{FS \text{ nucl}}$$

$$p+p \qquad p+A \qquad A+A$$

8/15/2004 Jan Rak

Fragmentation Function (distribution of parton momentum among fragments)

In Principle

$$g_i$$
 g_i

$$\vec{p}_{parton} = \sum_{i} \vec{p}_{i}$$

$$\vec{p}_{parton} = \sum_{i} \vec{p}_{i}$$
 $|\vec{p}_{parton}| = \sum_{i} |\vec{p}_{i}| \cos(\theta_{i})$

$$z_{i} = \frac{|\vec{p}_{i}| \cos(\theta_{i})}{|\vec{p}_{parton}|}$$

$$\sum_{i} z_{i} = 1$$

 $z_{i} = \frac{|\vec{p}_{i}| \cos(\theta_{i})}{|\vec{p}_{parton}|} \qquad \sum_{i} z_{i} = 1 \qquad \text{Fragmentation function} \quad D(z) \propto e^{-z/\langle z \rangle}$

In Practice parton momenta are not known

$$x_E = -\frac{\vec{p}_T \cdot \vec{p}_{Ttrigg}}{|\vec{p}_{Ttrigg}|^2}$$

$$x_E z_{trigg} = \frac{p_T \cos(\Delta \varphi)}{p_{parton}} = z$$
 \Rightarrow Simple relation

$$\langle z \rangle = \langle x_E \rangle \langle z_{trigg} \rangle$$

x_F in pp collisions

PHENIX preliminary

CCOR (ISR) $\sqrt{s} = 63 \text{ GeV}$

see A.L.S. Angelis, Nucl Phys B209 (1982)

(z) extracted from pp data

We measured x_E and

$$\langle z \rangle = \langle x_E \rangle \langle z_{trigg} \rangle$$

$$x_{Ttrigg} = 2.p_{Ttrigg}/\sqrt{s}$$

$$\langle z_{trigg} \rangle \propto \int_{x_{Ttrigg}}^{1} z \left(e^{-z/\langle z \rangle} f_q(p_T/z) \right) z^{-2} dz$$

Only one unknown variable $\langle z \rangle \Rightarrow$ iterative so that one parton distrib.

Slope of the fragmentation function in p+p collisions at \sqrt{s} =200 GeV

$$\frac{1}{\langle z \rangle} = 6.16 \pm 0.32$$

pp and dAu correlation functions

$\sigma_N,\,\sigma_A$, $\langle|j_{Ty}|\rangle$, $\langle|k_{Ty}|\rangle$ relations

Knowing σ_N and σ_A it is straightforward to extract $\langle |j_{Ty}| \rangle$ and $\langle z_{trigg} \rangle \langle |k_{Ty}| \rangle$ In the high- p_T limit $(p_T >> \langle |j_{Ty}| \rangle$ and $p_T >> \langle |k_{Ty}| \rangle$)

$$\langle |j_{\perp y}| \rangle = \langle p_{\perp} \rangle \sin \frac{\sigma_N}{\sqrt{\pi}}$$

$$\langle |k_{Ty}| \rangle \approx \langle p_T \rangle \sqrt{\sigma_A^2 - \sigma_N^2}$$

However, inspired by <u>Feynman</u>, <u>Field</u>, <u>Fox</u> and <u>Tannenbaum</u> (see *Phys. Lett. 97B (1980) 163*) we derived more accurate equation

$$\langle z_{trigg} \rangle \langle | k_{Ty} | \rangle = \frac{\langle p_T \rangle}{\sqrt{2} x_h} \sqrt{\sin^2 \sqrt{\frac{2}{\pi}} \sigma_A - (1 + x^2_h) \sin^2 \frac{\sigma_N}{\sqrt{\pi}}}$$

$$X_h = p_{T,assoc} / p_{T,trigg}$$

σ_{N} , $\sigma_{A} \rightarrow \langle |j_{Ty}| \rangle$, $\langle |k_{Ty}| \rangle$ in pp data

8/15/2004 Jan Rak 10

Di-jet fragmentation

"wave function collapse"

For fixed pT correlation the parton distribution function is almost unaffected by the condition of having fragment on the opposite side.

kT-smearing

Associated parton distribution $f_a = kT \otimes f_t$ and the final formula for invariant cross section is

$$\frac{1}{p_{t}} \frac{d^{2}\sigma}{dp_{t}dp_{a}} = \frac{1}{p_{t}} \int_{p_{t}}^{\sqrt{s}/2} dz_{t} \cdot D(z_{t}) \cdot \frac{1}{z_{t}} \int_{p_{a}}^{\sqrt{s}/2} dq_{a} \cdot C_{bb}(q_{a} - \frac{p_{t}}{z_{t}}, \langle k_{T}^{2} \rangle) \cdot f(q_{a}) \cdot D(\frac{p_{a}}{q_{a}})$$

Di-jet mean z

conditional

$$\langle z_t \rangle = \frac{\int_{x_{Tt}}^{p_{Tt}/p_{Ta}} f_q(\frac{p_{Tt}}{z_t}) \cdot D(z_t) \cdot D(\frac{p_{Ta}}{p_{Tt}} z_t) \cdot dz_t}{\int_{x_{Tt}}^{p_{Tt}/p_{Ta}} \frac{1}{z_t} f_q(\frac{p_{Tt}}{z_t}) \cdot D(z_t) \cdot D(\frac{p_{Ta}}{p_{Tt}} z_t) \cdot dz_t} \qquad \langle z \rangle = \frac{\int_{x_{\perp}}^{1} z \ z^{-2} \ D(z) \ f_q(p_{\perp}/z) \ dz}{\int_{x_{\perp}}^{1} z^{-2} \ D(z) \ f_q(p_{\perp}/z) \ dz}$$

inclusive

$$\langle z \rangle = \frac{\int_{x_{\perp}}^{1} z \ z^{-2} \ D(z) \ f_{q}(p_{\perp}/z) \ dz}{\int_{x_{\perp}}^{1} z^{-2} \ D(z) \ f_{q}(p_{\perp}/z) \ dz}$$

Simulation

Sorry, I can show only simulation – the final data Phys. Rev. C.

PHENIX/CCOR ptrigg slopes

Associated yields – complementary method of $\langle |k_{T_V}| \rangle$ extraction

AuAu $\langle |j_{Ty}| \rangle$ and $\langle z \rangle \, \langle |k_{Ty}| \rangle$ from CF

Jana Bielcikova

Phys.Rev.Lett.92:032301,2004

$$\langle k_{\perp}^{2} \rangle_{AA} = \langle k_{\perp}^{2} \rangle_{vac} + \langle k_{\perp}^{2} \rangle_{IS \text{ nucl}} + \langle k_{\perp}^{2} \rangle_{FS \text{ nucl}}$$

18

There seems to be significant broadening of the away-side correlation peak which persists also at somewhat higher p_T range.

8/15/2004 Jan Rak

AuAu associated yields

 $(2.5 < p_{Ttrigg} < 4.0) \otimes (1.0 < p_{Tassoc} < 2.5) \text{ GeV/c}$

Note p_T is rather low; associated particle yields increase with centrality

p_T distributions on near and away side

Overall enhancement from pp to AA

Away side:

energy from initial parton seems to be converted to lower p_T particles

reminiscent of energy loss predictions

Apparent modification of the fragmentation function?

Summary and conclusions

Jet production and fragmentation:

- Good agreement of the jet properties in pp collisions with other lower \sqrt{s} experiments
- dAu j_T and k_T consistent with pp
- In AuAu significant broadening of "effective" k_T with centrality
- Yield of away side associated particles is suppressed at p_T >2GeV/c and shows rising trend with N_{part} below 2GeV/c. Remnant of high- p_T jets hint of jet-quenching balance ?

